Environmental Info-Mathematics II [1H105601]

Final Examination

Examiner: YAMASHITA M. Date: Thursday, July 24, 2013

Time: 09:00 A.M. - 10:10 A.M.

Read the directions to each problem carefully. Show your work and answer in complete sentences when appropriate. This exam has 16 questions on 4 pages including this cover.

- **Problem 0.** (5 points each) Explain the definitins of the followings. It does not mean to translate the followings into japanese mathematical term.
 - (1) matrix
 - (2) trace
 - (3) transposed matrix
 - (4) symmetric matrix
 - (5) Gaussian Elimination
 - (6) elementary operation (fundamental operation)
 - (7) linear combination
 - (8) dot product
 - (9) cross product
 - (10) determinant
 - (11) minor
 - (12) cofactor
 - (13) cofactor expansion (Laplace expansion)
 - (14) minimal polynomial
 - (15) eigenvalue
 - (16) eigenvector
 - (17) diagonalizable
- **Problem 1.** (15 points) Solve the following linear system using the fundamental row operations on the augmented matrix.

$$\begin{cases} x + y + 2z &= 2\\ 2x + y - z &= -1\\ -x + 2y + 2z &= 1 \end{cases}$$

Problem 2. (25 points) Find the rank of a matrix A using the fundamental operations.

Problem 3. (25 points) Find the inverse of a matrix A using the fundamental row operations on the augmented matrix.

$$A = \begin{pmatrix} 3 & 0 & -5 \\ 0 & 1 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

Problem 4. (15 points) Find the inverse of the reflection matrix

$$\begin{pmatrix}
\cos\theta & \sin\theta \\
\sin\theta & -\cos\theta
\end{pmatrix}$$

Problem 5. (20 points) Find a diagonlizable matrix A given the eigenvalues and associated eigenvectors of A.

$$\lambda = -1, \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 $\lambda = 1, \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

- **Problem 6.** (30 points) State and prove the Cayley-Hamilton Theorem.
- **Problem 7.** (35 points) Show that if A is an $n \times n$ matrix, then A^n can be written as a linear combination of the matrices $I, A, A^2, ..., A^{n-1}$ (that is, $A^n = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \cdots + \alpha_{n-1} A^{n-1}$ for some scalars $\alpha_0, ..., \alpha_{n-1}$ where I is the $n \times n$ identity matrix.
- **Problem 8.** (each 10 points) Let $\mathbf{i} = (1,0,0), \ \mathbf{j} = (0,1,0), \ \mathbf{k} = (0,0,1).$ Evaluate each expression.

$$(1) \ \ (\boldsymbol{i-j}) \times (\boldsymbol{i+j-k}) \cdot (\boldsymbol{i+j+k})$$

$$(2) \ \ (\boldsymbol{i}-2\boldsymbol{j}+\boldsymbol{k})\times(\boldsymbol{i}+\boldsymbol{k})\times(\boldsymbol{j}+\boldsymbol{k})$$

- **Problem 9.** (15 points each) Let $\mathbf{u} = (-1, 2, 3)$, $\mathbf{v} = (1, -2, 3)$, $\mathbf{w} = (0, 1, -1)$. Compute each expression.
 - (1) $\boldsymbol{u} \times \boldsymbol{v}$
 - (2) $\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})$
 - (3) $\boldsymbol{u} \times (\boldsymbol{v} \times \boldsymbol{w})$
- **Problem 10.** (15 points each) Evaluate the following determinants.

Problem 11. (15 points each) Find the eigenvalues and an associated eigenvector for each eigenvalue.

$$(1) \quad \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix} \qquad (2) \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} \qquad (3) \quad \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

Problem 12. (20 points each) Determine if the given matrix A is diagonalizable. If so, find a diagonalizing matrix P for A and check that $P^{-1}AP = D$.

$$(1) \quad \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad (2) \quad \begin{pmatrix} 15 & 6 \\ -6 & 3 \end{pmatrix} \qquad (3) \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- **Problem 13.** (20 points) If $(a-d)^2 + 4bc > 0$, show that the real matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is diagonalizable.
- **Problem 14.** (30 points) A matrix A has characteristic polynomial $f_A(x) = (x 1)^3$ and minimal polynomial $m_A(x) = (x 1)^2$. List all possible Jordan canonical forms for A.
- **Problem 15.** (15 points each) Let $A = \begin{pmatrix} -2 & -6 & 10 \\ 6 & 11 & 15 \\ -2 & -3 & -3 \end{pmatrix}$.
 - (1) Find the characteristic polynomial of A.
 - (2) Find the minimal polynomial of A.
 - (3) Find the eigenvalues of A.
 - (4) Find the Jordan (canonical) form of A.