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Abstract—At first we review the properties of the derive Proposition 3: (Yamshita) Forx,y € N, the set of natural

logarithmic function L, and we state theabc conjecture for L numbers,
of Euler function ¢. Thus we proved the abc conjecture for L
holds for some cases. L) =L + L)

I.  INTRODUCTION We extended the range of the functianfrom N to Q,

. . . - whereQ is the set of rational numbers, by
The study of the arithmetic function arising of the Euler

¢(n) function, representing the number of natural numbers
relatively prime to givenn has been done by some researchers,
for example by Pillai [7][8], Shapiro [6] and Manyi [5].

Let pn(X) be the iteratedp function such thatp;(X) = ¢(X),

en(X) = o(en-1(X)), and letC(x) denote the smalledt satisfy-

ing the conditiongy(x) = 2 for x> 3 andC(1) = C(2) = 0. 1.

L(%) = L(x) — L(y), Where§ €eQ

THE PROPERTIES OF DERIVED LOGARITHMIC FUNCTION Lf OF

Theorem 1:(Shapiro [6], [4], Mu&nyi [5]) For two inte- EULER FUNCTION ¢f
gersx andy, if either x or y is odd

COxy) = C(9 + CO). Proposition 4: (Miyata, Yamashita [3]) LetP be the set
and if bothx andy are even of prime numbers and : P — N be a function such that
1< f(p) < p and we define

o1 = x] | 1R,
i=1

In 2001, we also generalizeg@ropotion 3.

Cxy) =C(x)+C(y) + L.

In 1971, one of authors has introduced the notion of the
derived logarithmic functiorL of Euler functione.

Pi

wherex = pfp%--- py', and
Definition 2: (Yamashital) The “derived logarithmic func- PPz P

tion L” of Euler function¢ is defined by Li(1) = O
L(¢(X)) x is odd Li(0) = Llpr(x)+#pe (1) pix.
L(x) = ; )
Lie(X))+1 xis even
wherelL(1) = 0. Then, we have
Since the Euler functiorp is monotonically decreasing Li(xy) = Lt(X) + L+ (y).

function of n, the function with recursive definition in the
formula above is well-defined.
Proof.

Then, showed the next property for Using an induction argument on = pfpy---pf, it is

lprivate Communication between Yamashita and Tsukuba Univ. Prof.SLﬂiCIent to show
Dr. Uchiyama S. :On a derived logarithmic function of an Euler’s function,
1977.9.10. Yamashita knew the works of Pillai and Shapiro for the fiorst time. L:(X) = erL¢(py) + &Lt(p2) +--- + &Li(pr)



=#pefl):px-C Lemma 9:For all natural numbers > vy,

Li(¥) = Li(e(x)+a L(x-y) = 2L(x)
_ i(el —1)Le(p) + Zr: Le(f(p) + @ Corollary 10: For all natural numbers,y,z X,y, Z, If x+
. v ' y-z>0
r r L(X+y—-2 £ 2-max(L(x), L(y)).
= ;(a_l)Lf(pi)+;Lf(pi)_a+a Xy 750
- Yalim L(X ~y ~7) £ 2L(x)

Proposition 11:Let a,b,c € N be relatively prime num-
O bers satisfyinga+ b = c. If ¢(a) + ¢(b) = ¢(c), then
max(L(a), L(b), L(c)) = 2L(rad(@bc))
We notice that if f(p) = 1 then L¢(f(p)) = O, else
Lt (f(p) = L+(p) for pe P. Proof.
Froma+ b = c andg(a) + ¢(b) = ¢(c),
ap(c) — cp(a) + by(c) — cp(b) = 0,

IIl.  THE abCCONJECTURE FOR L

Let rad() be a radical ofx, that is if x = pg'py--- pf

thenrad(x) = p1p2--- pr- Using the computer resources, we and 0(©) (a) o(b) (©)
verified the followings, ac(T _ T) _ bC(T _ T)

Proposition 5: Let a, b, c € N be relatively prime numbers
satisfyinga+ b = c. If ¢ £ 10°, then o) ()
b ¢’
L(b), L <2-L
max(L(@), L(b), L(9) = (rad@ba) then it contradicts to the assumption theandc is relatively

L . . rime. Thus we have that
The following is an immediate result to 2 and show ap

property ofL. @ + (©) ’
c
Lemma 6:For xe N, and
_ e(c) | ¢(a)
1) if L(X) 2 n, thenx > 2" < T a
2) if L(x) £n, thenx < 3" Therefore
Corollary 7: e  ¢(c)
a _ b c
1) if x= 2", thenL(x) £n b~ o0 ©(a)
2) if x2 3", thenL(x) = n ¢ a
)iz 092 adabo( 40 _ 0
Lemma 8:For all natural numbers x,y satisfying C

,L(y) = 3, =
max(L(x), L(y)) = rad@b C)( w(c) G )
L(x+Y) < 2- max(L(x), L(y)) a

Here, we notice that

Proof. ( a) ( b) (c)
By Lemmas, x < 3*® andy < 30, radabg) - 2 rad@bg - 22, rad@bd -
X +y < 30 4 3L0) < o gMACEOLY) and

< p2maxt(.L(y) (1) L@ ) (2@ ) (£O) _5or1

= a )’ b )’ c

Thus, byCoroliary 7, Since%1 is ireducible,
L(x+y) < 2- max((x), L(y)) © @
¢(C, (3
- a| rad(abc)( . )
The nextLemmais proved in the same way as discussed in
P Y = rad@bg “"(C) _ rad@bg 9"("") @)

the proof ofLemmas8.



. b c . .
Therefore, by Lemma8, we see that Moreover, since— and - are irreducible,

L(a)2 < L(rad@bq)).

|rad(abc)( gd)  ¢(0) )
Similarly, ¢
L(b) < 2L(rad@bg)). = rad@bg -~ ‘p( D) _ adang-£9- 9”( 9
Moreover, we notice that
e@)  ¢(b) b| rad(abc)( e© _ ‘”g") )— rad(abc)%
c__a b
b~ ¢@ = rad@bg 2L ‘p( 9 _ rad@bg ‘P( 3) rad(abc)%,
a c
rad(abc)( "Dga) ¢EJb) ) and
B rad(abc)( sﬁ(aa) SO(CC) ) . c‘ rad(abc)( e®) _ ‘pf) )— rad(abc)%
_ - rad(@bg ‘”( b) _ ad@bg "”( 3 _radabg S
Finally we have a
L(c) < 2L(rad@ba). Thus, usingLemma 8,
O L(a) < L(rad(abc) ¢®) _ radang-£9 )
Proposition 12:Let a,b,c € N be relatively prime num- <2 L(rad(abc) #(0) )
?heerrs], satisfyinga + b = ¢ and ¢(a) + ¢(b) < ¢(c). If a=rad@) < 2. L(rad@bo)
max(L(a), L(b), L(c)) < 2- L(rad@bq) and usingLemma 9,
Proof.

¢(c) <p(a) d
We may assume that(a), L(b), L(c) = 3 by Proposition L(b) < L(rad(abc) — rad@bg - rad(abc)?

9 and thatp(a) + ¢(b) + d = ¢(c), whered > 0.

¢(c)
By the proof ofProposition11, we see that =2 L(rad(abc) )

o(c) (@ d < 2- L(rad@bo)
b_ ¢ a a
a eb)  ¢(0) o () ]
b c L(c) < L(rad(abc) 2 _rad@bg -2 rad(abc)—)
rad(abc)( ¢Q _ ¢@ )— rad@bg-2- b a
Y [
rad(""bc)( c ) < 2. L(rad@bg).
O
¢b) ¢@ _d
c _ b a a
ed)  ¢(c) Proposition 13:Let a,b,c € N be relatively prime num-
b c bers satisfyinga+ b = c and¢(a) + ¢(b) > ¢(c). If a=rad@)
rad(abc)( ¢E)b) ¢;a) ) _ radiabg % and L(¢(a) + ¢(b) — ¢(c) < L(a) then
B rad(abc)( e(b)  ¢(c) ) ' max((a), L(b), L(c)) = 2 L(rad(@bg)
b c
Hence, since radj = a Proof.

d We may assume that(a), L(b), L(c) > 3 by Proposition
radiabg—- € N. 9 and thatp(a) + ¢(b) — d = ¢(c), whered > 0.



By the proof of Proposition11, we see that

plc) (@ d
b __c a a
e(d)  ¢(c)
b c
rad(abc)( ¢© _ ¢ )+ rad(abc)%
i rad(abc)( *"E)b) “’E:C))
eb) (@ d
Cc__ b a a
p(b) 90(0)
b
rad(abc)( (b) ;a) )+rad(abc)%

c

rad(abc)( so(bb) _ ¢(© )

Hence, since radj = a

rad(abc)% eN.

. b C . .
Moreover, smce; and = are irreducible,

pb) _ ¢(0) )

' rad(abc)( .

90()

= rad@bq) ¢( b) _ ad@bg

b| rad(abc)( e _ ‘”g") )+rad(abc)%

= rad@bg 22 “’( 9 _ rad@bo ‘p( 3)

d
+ rad(abc)?,
and
¢ ‘ rad(abc)( e0) @) + rad(abc)%

so()

- rad@bg 2L 9"( b radang£Q. . rad(abc)%,

Thus, usmgLemma 8,

L(a)<L(rad(abc) ¢(b) - rad@bg (C))

<2. L(rad(abc) #(b) )
< 2. L(rad@bc)
and usingCorollary 10, sinceL(d) < L(a)

L(b) < L(rad(abc) #© _ ad@bo “’( ) +rad(abc)%)

<2. max( (rad(abc) 40 ),L(rad(abc)%))
< 2. L(rad@bo)

L(c) < L(rad(abc) #®) _ radabg ‘p( 9 +rad(abc)%)

<2. max( (rad(abc) #(b) ) L(rad(abc)%))

< 2. L(rad@bq).

Proposition 14: There are many counterexmples for

max(L(a), L(b), L(c)) £ L(rad@bo)).

Example 1:

a b c rad@bg L(a) L(b) L(c) L(rad)
1 8 9 6 0 3 2 2

5 27 32 30 2 3 5 4
32 49 81 42 5 4 4 4

3 125 128 30 1 6 7 4

7 121 128 154 2 6 7 6

3125 6859 9984 ok x 9 11 12 11
6591 83521 90112 s 10 16 16 12

Now, from the results oPropsitiors 5, 11, 12 and 13, we
would propose to state the following conjecture.

Conjecture :Let a,b,c € N be relatively prime numbers
satisfyinga+ b = c. Then
max(L(a), L(b), L(c)) £ 2- L(rad@bg).
This abc Conjecture for a derived logarithmic functioh. of

the Euler functiony is correct, the proof of Fermat's Last
theorem becomes much shorter and easier as follows:

We assume that the co-primé, yP, zP € N satisfy xP +
yp = 7P,

If our conjecture is correct,
PL(X) = L(xP) £ 2- L(rad(x"yPz))
=2- L(rad(xy?)
<2-L(xy2 = 2(L(x) + L(y) + L(2)

pL(y) = L(YP) < 2- L(rad(xPyPz"))
=2 L(rad(xy?)
<2-L(xyd = 2(L(¥) + L(y) + L(2)

pL(D) = L(z°) < 2- L(rad(x"yPz"))
=2 L(rad(xy?)
<2-L(xyd = 2(L(x) + L(Y) + L(2)

Therefore
p(L(X) + L(y) + L(2) = 6(L(x) + L(yY) + L(2),

hencep < 6.



But for exponentsn = 3,4,5,6 we already have proofs,
which were proved by Fermat, Euler, Dirichlet or Legendre,
S0 no three positive integersy, z such thatx? + yP = z° for
p> 2.

IV. ConNcLusioN

In this paper, we review the derived logarithmic function
of Euler function and its extension which are defined by one
of authors. And also describe some nice linear property of the
function.

We perform some kind of calculation related to so-called
the “abc’ problem on the derived logarithmic function by using
computer applications, and verified it up to a certain bound.

We also prove the same type of problem under a certain
condition. Finally state andbc’ problem as a open conjecture.

REFERENCES

[1] Kurokawa, N., Koyama, S.Introduction to theabc conjecture (in
Japanese)PHP Institute, Inc., (2013)

[2] Parab, A., TheABC-conjecture for polynomials,
http://www.math.purdue.edu/ " egoins/seminar/12-09-14.pdf,
ref.2015.2.28

[3] Miyata, D., Yamasita, M. :Note on derived logarithmic functions of
Euler’s functions,Proceedings of Autum meeting(App. MathV)ath.
Soc. of Japan,
http://yamashita-lab.net/open/mathconf-0.pdf, 2004.9, (in
Japanese)

[4] Shapiro, Harold N.|ntroduction to the Theory of Numberdohn Wiley
& Sons, New York et al.,(1983) [3. Arithmetic Functiof3.7 The Euler
Function. Exrcise ] 17 (p.77-78)]

[5] Muréanyi, Aladar, Az Euler-Elé ¢ -fuggweny itedlasval nyert
szamelneleti figgvenyl, Mat. Lapok 11 (1960), 47-67

[6] Shapiro, H., An arithmetic function arising from tlgefunction, Amer.
Math. Monthly 50 (1943), 18-30

[7] Pillai Sivasankaranarayana S., On some functions connecteds(i}h
Bull. Amer. Soc.35 (1929), 832-836

[8] Pillai Sivasankaranarayana S., On a function connected ¢f(it) Bull.
Amer. Soc.35 (1929), 837-841



