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Introduction

Definition

o(a modp) := the multiplicative order of a (mod p).

Recall: The multiplicative order of a (mod p) is the smallest integer k
such that ak ≡ 1 (mod p).

Example o(2 mod 5) = 4 since 21 ≡ 2 (mod 5), 22 ≡ 4 (mod 5), 23 ≡ 3
(mod 5) and 24 ≡ 1 (mod 5).
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Introduction

Theorem (Zsigmondy)

For every pair of positive integers (a, n), except n = 1 and (2,6), there
exists a prime p such that n = o(a mod p).

Let’s see why the exceptional cases might not work:

If n = 1, then 1 = o(a mod p)⇒ a1 ≡ 1 (mod p). But this is only
true when a = 1.
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Introduction

Theorem (Zsigmondy)

For every pair of positive integers (a, n), except n = 1 and (2,6), there
exists a prime p such that n = o (amod p).

(2, 6) is an exception means that there are no primes p such that
6 = o(2 modp), i.e. for any prime p such that 26 ≡ 1(mod p), it
must be the case that 23 ≡ 1 (mod p) or 22 ≡ 1 (mod p) also.

The fact that (2, 6) is an exception can be proven through elementary
means, but we’ll get it for free in the process of proving Zsigmondy’s
Theorem.
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Outline
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Cyclotomic Polynomials

Definition

We define nth cyclotomic polynomial as follows:

Φn(x) =
∏

ζ primitive
nth root of 1

(x − ζ).

Φn(x) has degree ϕ(n) since there are ϕ(n) primitive nth roots of unity.
(Recall: If ζ is primitive then ζk is primitive if and only if (k , n) = 1)

Some Other Properties:

Monic

Irreducible

In Z[x ]
(In fact, Φn(x) is the minimal polynomial for ζ over Q)
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Cyclotomic Polynomials

Theorem

xn − 1 =
∏
d |n

Φd(x)

(True since xn − 1 =
∏

ζ nth root of 1

(x − ζ) =
∏
d |n

∏
ζ primitive

d th root of 1

(x − ζ)).
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The Mobius Function

The Mobius function µ(n) is an arithmetic function satisfying µ(1) = 1

and
∑
d |n

µ(d) = 0 for every n > 1.

Example:
∑
d |2

µ(d) = µ(1) + µ(2) = 0.

Since µ(1) = 1 then it must be the case that µ(2) = −1.

Example:
∑
d |4

µ(d) = µ(1) + µ(2) + µ(4) = 0.

Since we know that µ(1) + µ(2) = 0 then µ(4) = 0.

In general: µ(n) =

{
0, n = m · pr , r > 1

−1k , n = p1p2 · · · pk
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Cyclotomic Polynomials

Theorem (Mobius Inversion Formula)

If f (n) =
∑
d |n

g(d) then g(n) =
∑
d |n

f (d) · µ(n/d).

Since xn − 1 =
∏
d |n

Φd(x) then Φn(x) =
∏
d |n

(xd − 1)µ(n/d)

(take log of both sides, apply Mobius inversion, then undo the logs).

Example:
Φ2(x) = (x1 − 1)µ(2/1) · (x2 − 1)µ(2/2) = (x − 1)−1 · (x2 − 1) = x + 1.
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Cyclotomic Polynomials

Some Examples:

Φ1(x) = x − 1
Φ2(x) = x + 1
Φ3(x) = x2 + x + 1
Φ4(x) = x2 + 1
Φ5(x) = x4 + x3 + x2 + x + 1
Φ6(x) = x2 − x + 1
Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1
Φ8(x) = x4 + 1

In general, Φp(x) = xp−1 + xp−2 + · · ·+ x + 1.

For k ≥ 1,Φpk (x) = Φp(xpk−1
). So Φpk (x) has the same number of

nonzero terms as Φp(x).
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Values of Cyclotomic Polynomials

Theorem

Suppose n > 1. Then:

(1) Φn(0) = 1

(2) Φn(1) =

{
p, n = pm,m > 0

1, otherwise

To prove (2): Evaluate xn−1
x−1 at x = 1 in 2 different ways to find

n =
∏
d |n
d>1

Φd(1). We know that Φp(x) = xp−1 + · · ·+ x + 1, so Φp(1) = p.

Moreover, Φpk (1) = p. By unique factorization, n = pe1
1 · · · p

eg
g . Since

there are ei divisors of n that are powers of pi for each prime pi dividing n
then, from our formula above, Φd(1) = 1 when d is composite.
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Values of Cyclotomic Polynomials

Theorem

Suppose n > 1. Then:

(3) If a > 1 then (a− 1)ϕ(n) < Φn(a) < (a + 1)ϕ(n).
(4) If a ≥ 3 and p | n is a prime factor, then Φn(a) > p.

Proof of (3)
If a > 1 then geometry implies that a− 1 <|a− ζ |< a + 1 for every point
ζ 6= 1 on the unit circle. The inequalities stated above follow from the fact

that | Φn(a) |=
∏
| a− ζ |.

Proof of (4)
Since ϕ(n) ≥ p − 1 then when a ≥ 3, we have Φn(a) > 2ϕ(n) ≥ 2p−1

(by (3)). But 2p−1 ≥ p since p ≥ 2.
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Key Lemma

Lemma

Suppose that n > 2 and a > 1 are integers and Φn(a) is prime. If
Φn(a) | n then n = 6 and a = 2.

Proof

Let p = Φn(a), where p | n.

If a ≥ 3 then Φn(a) > p by (4), which is obviously false.

Thus, a = 2 and Φn(2) = p.

Since Φn(2) = p then p | (2n − 1)
(since Φn(x) always divides xn − 1), i.e. 2n ≡ 1(mod p).

So, p must be odd.
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Key Lemma

So far, we have: p = Φn(2), p | n, p odd.

Factor n = pe ·m where p - m.

It’s a well-known fact from abstract algebra that if n is as above and
if α is a root of Φn(x) over Fp then m = o(α).

As a result, since we know that Φn(2) ≡ 0(mod p), then
m = o(2 mod p).

If e > 1 then p = Φn(2) = Φpe ·m(2) = Φm(2pe
) = Φpm(2pe−1

).

This contradicts (4), since 2pe−1 ≥ 2p > 4.

Thus, n = pm.
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Key Lemma

At this point, we have deduced: p = Φn(2), p | n, p odd, n = pm
where p - m.

We’re trying to show that n = 6.

Now, p = Φpm(2) = Φm(2p)
Φm(2) > (2p−1)ϕ(m)

(2+1)ϕ(m) ≥ 2p−1
3 (from (3)).

But then 3p + 1 > 2p, which is impossible if p > 3.

Therefore, p = 3 and m = o(2 mod 3) = 2, so n = 2 · 3 = 6.
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Recap and Extensions

We have proven the following Key Lemma:

Lemma

Suppose that n > 2 and a > 1 are integers and Φn(a) is prime. If
Φn(a) | n then n = 6 and a = 2.

We can extend the Key Lemma to show that if Φn(a) is a divisor of n for
some n > 2 and a > 1, then n = 6 and a = 2.
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Good Pairs, Bad Pairs

Definition

Let a, n ∈ Z+, a > 1. The pair (a, n) is good if n = o(a mod p) for some
prime p.

Lemma (Good Pairs Condition)

(a, n) is good if and only if there is a prime p such that p | (an − 1) but
p - (an/q − 1) for every prime factor q | n.

Example 32 − 1 uses the same primes as 31 − 1, so (3, 2) is bad.
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Good Pairs, Bad Pairs

Lemma

(a, 1) is bad when a = 2.
(a, 2) is bad when a = 2m − 1 for some m > 1.
All other pairs (a, 2k) are good.

Example 22 − 1 = 3, 23 − 1 = 7, 26 − 1 = 63 = 32 · 7. Thus, (2, 6) is bad.
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Zsigmondy’s Theorem

Theorem (Zsigmondy)

If n ≥ 2, the only bad pair (a, n) is (2, 6).

[In other words, there exists a prime p such that n = o(a mod p) for every
pair (a, n) except (2, 6)]

Proof Outline Suppose (a, n) is bad and n > 2. We will translate this
into a problem about cyclotomic polynomials and use the Key Lemma to
derive a contradiction unless a = 2 and n = 6.

Lola Thompson (Dartmouth College) Zsigmondy’s Theorem August 11, 2009 19 / 1



Two More Lemmas

In order to prove Zsigmondy’s Theorem, we will need the following two
lemmas:

Lemma (1)

If xn − 1 = Φn(x) · ωn(x) then ωn(x) =
∏
d |n
d<n

Φd(x) and (xd − 1) | ωn(x)

in Z[x ] whenever d | n, d < n.

Lemma (2)

Suppose that d | n and ad ≡ 1 (mod p). If d < n then p | n
d . In any case,

p | n.
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Proving Zsigmondy’s Theorem

Theorem (Zsigmondy)

If n ≥ 2, the only bad pair (a, n) is (2, 6).

Proof

Pick an odd prime factor p | Φn(a).

Suppose that (a, n) is bad, so that k = o(a mod p) is a proper divisor
of n.

Let xn − 1 = Φn(x) · ωn(x).

From Lemma (1), (ak − 1) | ωn(a), so p | (an − 1) also.

So p2 is a factor of Φn(a) · ωn(a) = an − 1.

By Fermat’s little Theorem, ap−1 ≡ 1(mod p), so k | p − 1, hence
k < p.
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k < p.
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Proving Zsigmondy’s Theorem

From Lemma (2), we know that if k | n and ak ≡ 1(mod p), then if
k < n, we must have p | n

k and p | n.

It follows that p is the only prime factor of n
k , so we can write

n = k · pu for some u ≥ 1.

We can also use Lemma (2) to show that p is the only prime factor of
Φn(a). In other words, Φn(a) = pt for some t ≥ 1.
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Finishing Up

We’ve already shown that p is odd and p | n and Φn(a) = pt .

If t > 2 then p2 divides an−1
an/p−1

, since (an/p − 1) | ωn(a).

We can use the exponent law to derive a contradiction to the
statement that p2 | an−1

an/p−1
. Thus, Φn(a) = p.

Now, if a ≥ 3 then Φn(a) > p, which we know is false.

Hence, we must have a = 2. By the Key Lemma, n = 6.

Therefore, (2, 6) is the only bad pair.

We’ve proven Zsigmondy’s Theorem!
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A Special Case of Zsigmondy’s Theorem

A special case of Zsigmondy’s Theorem states the problem in terms of
Mersenne numbers:

Consider the kth Mersenne number Mk = 2k − 1. Then, each of
M2,M3,M4, ... has a prime factor that does not occur as a factor of an
earlier member of the sequence EXCEPT for M6.

Lola Thompson (Dartmouth College) Zsigmondy’s Theorem August 11, 2009 24 / 1



Acknowledgements

Thanks to Dr. Dan Shapiro, whose expository notes on the subject were
invaluable in writing this talk.

Bibliography:

1. Introduction to the Theory of Numbers by Harold N. Shapiro

2. Abstract Algebra by David S. Dummit and Richard M. Foote

Lola Thompson (Dartmouth College) Zsigmondy’s Theorem August 11, 2009 25 / 1


