Zsigmondy's Theorem

Lola Thompson

Dartmouth College

August 11, 2009

Introduction

Definition
 $o(a \bmod p):=$ the multiplicative order of $a(\bmod p)$.

Recall: The multiplicative order of $a(\bmod p)$ is the smallest integer k such that $a^{k} \equiv 1(\bmod p)$.

Example $o(2 \bmod 5)=4$ since $2^{1} \equiv 2(\bmod 5), 2^{2} \equiv 4(\bmod 5), 2^{3} \equiv 3$ $(\bmod 5)$ and $2^{4} \equiv 1(\bmod 5)$.

Introduction

Theorem (Zsigmondy)
For every pair of positive integers (a, n), except $n=1$ and $(2,6)$, there exists a prime p such that $n=o(\operatorname{a} \bmod p)$.

- Let's see why the exceptional cases might not work:

Introduction

Theorem (Zsigmondy)

For every pair of positive integers (a, n), except $n=1$ and $(2,6)$, there exists a prime p such that $n=o(a \bmod p)$.

- Let's see why the exceptional cases might not work:
- If $n=1$, then $1=o(a \bmod p) \Rightarrow a^{1} \equiv 1(\bmod p)$. But this is only true when $a=1$.

Introduction

Theorem (Zsigmondy)

For every pair of positive integers (a,n), except $n=1$ and (2,6), there exists a prime p such that $n=0(\operatorname{amod} p)$.

- $(2,6)$ is an exception means that there are no primes p such that $6=o(2 \bmod p)$, i.e. for any prime p such that $2^{6} \equiv 1(\bmod p)$, it must be the case that $2^{3} \equiv 1(\bmod p)$ or $2^{2} \equiv 1(\bmod p)$ also.

Introduction

Theorem (Zsigmondy)

For every pair of positive integers (a, n), except $n=1$ and (2,6), there exists a prime p such that $n=0(\operatorname{amod} p)$.

- $(2,6)$ is an exception means that there are no primes p such that $6=o(2 \bmod p)$, i.e. for any prime p such that $2^{6} \equiv 1(\bmod p)$, it must be the case that $2^{3} \equiv 1(\bmod p)$ or $2^{2} \equiv 1(\bmod p)$ also.
- The fact that $(2,6)$ is an exception can be proven through elementary means, but we'll get it for free in the process of proving Zsigmondy's Theorem.

Outline

Cyclotomic Polynomials

Definition

We define $n^{\text {th }}$ cyclotomic polynomial as follows:

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{\text {th }} \text { root of } 1}}(x-\zeta) .
$$

$\Phi_{n}(x)$ has degree $\varphi(n)$ since there are $\varphi(n)$ primitive $n^{\text {th }}$ roots of unity. (Recall: If ζ is primitive then ζ^{k} is primitive if and only if $(k, n)=1$)

Some Other Properties:

- Monic

Cyclotomic Polynomials

Definition

We define $n^{\text {th }}$ cyclotomic polynomial as follows:

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{\text {th }} \text { root of } 1}}(x-\zeta) .
$$

$\Phi_{n}(x)$ has degree $\varphi(n)$ since there are $\varphi(n)$ primitive $n^{\text {th }}$ roots of unity. (Recall: If ζ is primitive then ζ^{k} is primitive if and only if $(k, n)=1$)

Some Other Properties:

- Monic
- Irreducible

Cyclotomic Polynomials

Definition

We define $n^{\text {th }}$ cyclotomic polynomial as follows:

$$
\Phi_{n}(x)=\prod_{\substack{\zeta \text { primitive } \\ n^{\text {th }} \text { root of } 1}}(x-\zeta) .
$$

$\Phi_{n}(x)$ has degree $\varphi(n)$ since there are $\varphi(n)$ primitive $n^{\text {th }}$ roots of unity. (Recall: If ζ is primitive then ζ^{k} is primitive if and only if $(k, n)=1$)

Some Other Properties:

- Monic
- Irreducible
- In $\mathbb{Z}[x]$
(In fact, $\Phi_{n}(x)$ is the minimal polynomial for ζ over \mathbb{Q})

Cyclotomic Polynomials

Theorem

$$
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)
$$

(True since $x^{n}-1=\prod_{\zeta n^{\text {th }} \text { root of } 1}(x-\zeta)=\prod_{d \mid n} \prod_{\substack{\text { primitive } \\ d^{t h} \\ \text { root of } 1}}(x-\zeta)$).

The Mobius Function

The Mobius function $\mu(n)$ is an arithmetic function satisfying $\mu(1)=1$ and $\sum_{d \mid n} \mu(d)=0$ for every $n>1$.
Example: $\sum_{d \mid 2} \mu(d)=\mu(1)+\mu(2)=0$.
Since $\mu(1)=1$ then it must be the case that $\mu(2)=-1$.
Example: $\sum_{d \mid 4} \mu(d)=\mu(1)+\mu(2)+\mu(4)=0$.
Since we know that $\mu(1)+\mu(2)=0$ then $\mu(4)=0$.
In general: $\mu(n)=\left\{\begin{array}{l}0, n=m \cdot p^{r}, r>1 \\ -1^{k}, n=p_{1} p_{2} \cdots p_{k}\end{array}\right.$

Cyclotomic Polynomials

Theorem (Mobius Inversion Formula)
If $f(n)=\sum_{d \mid n} g(d)$ then $g(n)=\sum_{d \mid n} f(d) \cdot \mu(n / d)$.
Since $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$ then $\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}$
(take log of both sides, apply Mobius inversion, then undo the logs).

Example:

$$
\Phi_{2}(x)=\left(x^{1}-1\right)^{\mu(2 / 1)} \cdot\left(x^{2}-1\right)^{\mu(2 / 2)}=(x-1)^{-1} \cdot\left(x^{2}-1\right)=x+1 .
$$

Cyclotomic Polynomials

Some Examples:

$$
\begin{aligned}
& \Phi_{1}(x)=x-1 \\
& \Phi_{2}(x)=x+1 \\
& \Phi_{3}(x)=x^{2}+x+1 \\
& \Phi_{4}(x)=x^{2}+1 \\
& \Phi_{5}(x)=x^{4}+x^{3}+x^{2}+x+1 \\
& \Phi_{6}(x)=x^{2}-x+1 \\
& \Phi_{7}(x)=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 \\
& \Phi_{8}(x)=x^{4}+1
\end{aligned}
$$

In general, $\Phi_{p}(x)=x^{p-1}+x^{p-2}+\cdots+x+1$.
For $k \geq 1, \Phi_{p^{k}}(x)=\Phi_{p}\left(x^{p^{k-1}}\right)$. So $\Phi_{p^{k}}(x)$ has the same number of nonzero terms as $\Phi_{p}(x)$.

Values of Cyclotomic Polynomials

Theorem

Suppose $n>1$. Then:
(1) $\Phi_{n}(0)=1$
(2) $\Phi_{n}(1)= \begin{cases}p, & n=p^{m}, m>0 \\ 1, & \text { otherwise }\end{cases}$

To prove (2): Evaluate $\frac{x^{n}-1}{x-1}$ at $x=1$ in 2 different ways to find $n=\prod_{\substack{d \mid n \\ d>1}} \Phi_{d}(1)$. We know that $\Phi_{p}(x)=x^{p-1}+\cdots+x+1$, so $\Phi_{p}(1)=p$.
Moreover, $\Phi_{p^{k}}(1)=p$. By unique factorization, $n=p_{1}^{e_{1}} \cdots p_{g}^{e_{g}}$. Since there are e_{i} divisors of n that are powers of p_{i} for each prime p_{i} dividing n then, from our formula above, $\Phi_{d}(1)=1$ when d is composite.

Values of Cyclotomic Polynomials

Theorem

Suppose $n>1$. Then:
(3) If $a>1$ then $(a-1)^{\varphi(n)}<\Phi_{n}(a)<(a+1)^{\varphi(n)}$.
(4) If $a \geq 3$ and $p \mid n$ is a prime factor, then $\Phi_{n}(a)>p$.

Proof of (3)

If $a>1$ then geometry implies that $a-1<|a-\zeta|<a+1$ for every point $\zeta \neq 1$ on the unit circle. The inequalities stated above follow from the fact that $\left|\Phi_{n}(a)\right|=\prod|a-\zeta|$.

Proof of (4)

Since $\varphi(n) \geq p-1$ then when $a \geq 3$, we have $\Phi_{n}(a)>2^{\varphi(n)} \geq 2^{p-1}$ (by (3)). But $2^{p-1} \geq p$ since $p \geq 2$.

Key Lemma

Lemma

Suppose that $n>2$ and $a>1$ are integers and $\Phi_{n}(a)$ is prime. If $\Phi_{n}(a) \mid n$ then $n=6$ and $a=2$.

Proof

- Let $p=\Phi_{n}(a)$, where $p \mid n$.

Key Lemma

Lemma

Suppose that $n>2$ and $a>1$ are integers and $\Phi_{n}(a)$ is prime. If $\Phi_{n}(a) \mid n$ then $n=6$ and $a=2$.

Proof

- Let $p=\Phi_{n}(a)$, where $p \mid n$.
- If $a \geq 3$ then $\Phi_{n}(a)>p$ by (4), which is obviously false.

Key Lemma

Lemma

Suppose that $n>2$ and $a>1$ are integers and $\Phi_{n}(a)$ is prime. If $\Phi_{n}(a) \mid n$ then $n=6$ and $a=2$.

Proof

- Let $p=\Phi_{n}(a)$, where $p \mid n$.
- If $a \geq 3$ then $\Phi_{n}(a)>p$ by (4), which is obviously false.
- Thus, $a=2$ and $\Phi_{n}(2)=p$.

Key Lemma

Lemma

Suppose that $n>2$ and $a>1$ are integers and $\Phi_{n}(a)$ is prime. If $\Phi_{n}(a) \mid n$ then $n=6$ and $a=2$.

Proof

- Let $p=\Phi_{n}(a)$, where $p \mid n$.
- If $a \geq 3$ then $\Phi_{n}(a)>p$ by (4), which is obviously false.
- Thus, $a=2$ and $\Phi_{n}(2)=p$.
- Since $\Phi_{n}(2)=p$ then $p \mid\left(2^{n}-1\right)$
(since $\Phi_{n}(x)$ always divides $\left.x^{n}-1\right)$, i.e. $2^{n} \equiv 1(\bmod p)$.

Key Lemma

Lemma

Suppose that $n>2$ and $a>1$ are integers and $\Phi_{n}(a)$ is prime. If $\Phi_{n}(a) \mid n$ then $n=6$ and $a=2$.

Proof

- Let $p=\Phi_{n}(a)$, where $p \mid n$.
- If $a \geq 3$ then $\Phi_{n}(a)>p$ by (4), which is obviously false.
- Thus, $a=2$ and $\Phi_{n}(2)=p$.
- Since $\Phi_{n}(2)=p$ then $p \mid\left(2^{n}-1\right)$
(since $\Phi_{n}(x)$ always divides $\left.x^{n}-1\right)$, i.e. $2^{n} \equiv 1(\bmod p)$.
- So, p must be odd.

Key Lemma

- So far, we have: $p=\Phi_{n}(2), p \mid n, p$ odd.

Key Lemma

- So far, we have: $p=\Phi_{n}(2), p \mid n, p$ odd.
- Factor $n=p^{e} \cdot m$ where $p \nmid m$.

Key Lemma

- So far, we have: $p=\Phi_{n}(2), p \mid n, p$ odd.
- Factor $n=p^{e} \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_{n}(x)$ over F_{p} then $m=o(\alpha)$.

Key Lemma

- So far, we have: $p=\Phi_{n}(2), p \mid n, p$ odd.
- Factor $n=p^{e} \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_{n}(x)$ over F_{p} then $m=o(\alpha)$.
- As a result, since we know that $\Phi_{n}(2) \equiv 0(\bmod p)$, then $m=o(2 \bmod p)$.

Key Lemma

- So far, we have: $p=\Phi_{n}(2), p \mid n, p$ odd.
- Factor $n=p^{e} \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_{n}(x)$ over F_{p} then $m=o(\alpha)$.
- As a result, since we know that $\Phi_{n}(2) \equiv 0(\bmod p)$, then $m=o(2 \bmod p)$.
- If $e>1$ then $p=\Phi_{n}(2)=\Phi_{p^{e} \cdot m}(2)=\Phi_{m}\left(2^{p^{e}}\right)=\Phi_{p m}\left(2^{p^{e-1}}\right)$.

Key Lemma

- So far, we have: $p=\Phi_{n}(2), p \mid n, p$ odd.
- Factor $n=p^{e} \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_{n}(x)$ over F_{p} then $m=o(\alpha)$.
- As a result, since we know that $\Phi_{n}(2) \equiv 0(\bmod p)$, then $m=o(2 \bmod p)$.
- If $e>1$ then $p=\Phi_{n}(2)=\Phi_{p^{e} \cdot m}(2)=\Phi_{m}\left(2^{p^{e}}\right)=\Phi_{p m}\left(2^{p^{e-1}}\right)$.
- This contradicts (4), since $2^{p^{e-1}} \geq 2^{p}>4$.

Key Lemma

- So far, we have: $p=\Phi_{n}(2), p \mid n, p$ odd.
- Factor $n=p^{e} \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_{n}(x)$ over F_{p} then $m=o(\alpha)$.
- As a result, since we know that $\Phi_{n}(2) \equiv 0(\bmod p)$, then $m=o(2 \bmod p)$.
- If $e>1$ then $p=\Phi_{n}(2)=\Phi_{p^{e} \cdot m}(2)=\Phi_{m}\left(2^{p^{e}}\right)=\Phi_{p m}\left(2^{p^{e-1}}\right)$.
- This contradicts (4), since $2^{p^{e-1}} \geq 2^{p}>4$.
- Thus, $n=p m$.

Key Lemma

- At this point, we have deduced: $p=\Phi_{n}(2), p \mid n, p$ odd, $n=p m$ where $p \nmid m$.

Key Lemma

- At this point, we have deduced: $p=\Phi_{n}(2), p \mid n, p$ odd, $n=p m$ where $p \nmid m$.
- We're trying to show that $n=6$.

Key Lemma

- At this point, we have deduced: $p=\Phi_{n}(2), p \mid n, p$ odd, $n=p m$ where $p \nmid m$.
- We're trying to show that $n=6$.
- Now, $p=\Phi_{p m}(2)=\frac{\Phi_{m}\left(2^{p}\right)}{\Phi_{m}(2)}>\frac{\left(2^{p}-1\right)^{\varphi(m)}}{(2+1)^{\varphi(m)}} \geq \frac{2^{p}-1}{3}($ from (3)).

Key Lemma

- At this point, we have deduced: $p=\Phi_{n}(2), p \mid n, p$ odd, $n=p m$ where $p \nmid m$.
- We're trying to show that $n=6$.
- Now, $p=\Phi_{p m}(2)=\frac{\Phi_{m}\left(2^{p}\right)}{\Phi_{m}(2)}>\frac{\left(2^{p}-1\right)^{\varphi(m)}}{(2+1)^{\varphi(m)}} \geq \frac{2^{p}-1}{3}($ from (3)).
- But then $3 p+1>2^{p}$, which is impossible if $p>3$.

Key Lemma

- At this point, we have deduced: $p=\Phi_{n}(2), p \mid n, p$ odd, $n=p m$ where $p \nmid m$.
- We're trying to show that $n=6$.
- Now, $p=\Phi_{p m}(2)=\frac{\Phi_{m}\left(2^{p}\right)}{\Phi_{m}(2)}>\frac{\left(2^{p}-1\right)^{\varphi(m)}}{(2+1)^{\varphi(m)}} \geq \frac{2^{p}-1}{3}($ from (3)).
- But then $3 p+1>2^{p}$, which is impossible if $p>3$.
- Therefore, $p=3$ and $m=o(2 \bmod 3)=2$, so $n=2 \cdot 3=6$.

Recap and Extensions

We have proven the following Key Lemma:

Lemma
 Suppose that $n>2$ and $a>1$ are integers and $\Phi_{n}(a)$ is prime. If $\Phi_{n}(a) \mid n$ then $n=6$ and $a=2$.

We can extend the Key Lemma to show that if $\Phi_{n}(a)$ is a divisor of n for some $n>2$ and $a>1$, then $n=6$ and $a=2$.

Good Pairs, Bad Pairs

Definition

Let $a, n \in \mathbb{Z}^{+}, a>1$. The pair (a, n) is good if $n=o(\operatorname{amod} p)$ for some prime p.

Lemma (Good Pairs Condition)

(a, n) is good if and only if there is a prime p such that $p \mid\left(a^{n}-1\right)$ but $p \nmid\left(a^{n / q}-1\right)$ for every prime factor $q \mid n$.

Example $3^{2}-1$ uses the same primes as $3^{1}-1$, so $(3,2)$ is bad.

Good Pairs, Bad Pairs

Lemma

$(a, 1)$ is bad when $a=2$.
$(a, 2)$ is bad when $a=2^{m}-1$ for some $m>1$.
All other pairs ($a, 2^{k}$) are good.

Example $2^{2}-1=3,2^{3}-1=7,2^{6}-1=63=3^{2} \cdot 7$. Thus, $(2,6)$ is bad.

Zsigmondy's Theorem

Theorem (Zsigmondy)
If $n \geq 2$, the only bad pair (a, n) is $(2,6)$.
[In other words, there exists a prime p such that $n=o(a \bmod p)$ for every pair (a, n) except $(2,6)]$

Proof Outline Suppose (a, n) is bad and $n>2$. We will translate this into a problem about cyclotomic polynomials and use the Key Lemma to derive a contradiction unless $a=2$ and $n=6$.

Two More Lemmas

In order to prove Zsigmondy's Theorem, we will need the following two lemmas:

Lemma (1)

$$
\text { If } x^{n}-1=\Phi_{n}(x) \cdot \omega_{n}(x) \text { then } \omega_{n}(x)=\prod_{\substack{d \mid n \\ d<n}} \Phi_{d}(x) \text { and }\left(x^{d}-1\right) \mid \omega_{n}(x)
$$

in $\mathbb{Z}[x]$ whenever $d \mid n, d<n$.

Lemma (2)

Suppose that $d \mid n$ and $a^{d} \equiv 1(\bmod p)$. If $d<n$ then $p \left\lvert\, \frac{n}{d}\right.$. In any case, $p \mid n$.

Proving Zsigmondy's Theorem

Theorem (Zsigmondy)
If $n \geq 2$, the only bad pair (a, n) is $(2,6)$.

Proof

- Pick an odd prime factor $p \mid \Phi_{n}(a)$.

Proving Zsigmondy's Theorem

Theorem (Zsigmondy)
If $n \geq 2$, the only bad pair (a, n) is $(2,6)$.

Proof

- Pick an odd prime factor $p \mid \Phi_{n}(a)$.
- Suppose that (a, n) is bad, so that $k=o(a \bmod p)$ is a proper divisor of n.

Proving Zsigmondy's Theorem

Theorem (Zsigmondy)
If $n \geq 2$, the only bad pair (a, n) is $(2,6)$.

Proof

- Pick an odd prime factor $p \mid \Phi_{n}(a)$.
- Suppose that (a, n) is bad, so that $k=o(a \bmod p)$ is a proper divisor of n.
- Let $x^{n}-1=\Phi_{n}(x) \cdot \omega_{n}(x)$.

Proving Zsigmondy's Theorem

Theorem (Zsigmondy)
If $n \geq 2$, the only bad pair (a, n) is $(2,6)$.

Proof

- Pick an odd prime factor $p \mid \Phi_{n}(a)$.
- Suppose that (a, n) is bad, so that $k=o(a \bmod p)$ is a proper divisor of n.
- Let $x^{n}-1=\Phi_{n}(x) \cdot \omega_{n}(x)$.
- From Lemma (1), $\left(a^{k}-1\right) \mid \omega_{n}(a)$, so $p \mid\left(a^{n}-1\right)$ also.

Proving Zsigmondy's Theorem

Theorem (Zsigmondy)
If $n \geq 2$, the only bad pair (a, n) is $(2,6)$.

Proof

- Pick an odd prime factor $p \mid \Phi_{n}(a)$.
- Suppose that (a, n) is bad, so that $k=o(a \bmod p)$ is a proper divisor of n.
- Let $x^{n}-1=\Phi_{n}(x) \cdot \omega_{n}(x)$.
- From Lemma (1), $\left(a^{k}-1\right) \mid \omega_{n}(a)$, so $p \mid\left(a^{n}-1\right)$ also.
- So p^{2} is a factor of $\Phi_{n}(a) \cdot \omega_{n}(a)=a^{n}-1$.

Proving Zsigmondy's Theorem

Theorem (Zsigmondy)

If $n \geq 2$, the only bad pair (a, n) is $(2,6)$.

Proof

- Pick an odd prime factor $p \mid \Phi_{n}(a)$.
- Suppose that (a, n) is bad, so that $k=o(a \bmod p)$ is a proper divisor of n.
- Let $x^{n}-1=\Phi_{n}(x) \cdot \omega_{n}(x)$.
- From Lemma (1), $\left(a^{k}-1\right) \mid \omega_{n}(a)$, so $p \mid\left(a^{n}-1\right)$ also.
- So p^{2} is a factor of $\Phi_{n}(a) \cdot \omega_{n}(a)=a^{n}-1$.
- By Fermat's little Theorem, $a^{p-1} \equiv 1(\bmod p)$, so $k \mid p-1$, hence $k<p$.

Proving Zsigmondy's Theorem

- From Lemma (2), we know that if $k \mid n$ and $a^{k} \equiv 1(\bmod p)$, then if $k<n$, we must have $p \left\lvert\, \frac{n}{k}\right.$ and $p \mid n$.

Proving Zsigmondy's Theorem

- From Lemma (2), we know that if $k \mid n$ and $a^{k} \equiv 1(\bmod p)$, then if $k<n$, we must have $p \left\lvert\, \frac{n}{k}\right.$ and $p \mid n$.
- It follows that p is the only prime factor of $\frac{n}{k}$, so we can write $n=k \cdot p^{u}$ for some $u \geq 1$.

Proving Zsigmondy's Theorem

- From Lemma (2), we know that if $k \mid n$ and $a^{k} \equiv 1(\bmod p)$, then if $k<n$, we must have $p \left\lvert\, \frac{n}{k}\right.$ and $p \mid n$.
- It follows that p is the only prime factor of $\frac{n}{k}$, so we can write $n=k \cdot p^{u}$ for some $u \geq 1$.
- We can also use Lemma (2) to show that p is the only prime factor of $\Phi_{n}(a)$. In other words, $\Phi_{n}(a)=p^{t}$ for some $t \geq 1$.

Finishing Up

- We've already shown that p is odd and $p \mid n$ and $\Phi_{n}(a)=p^{t}$.

Finishing Up

- We've already shown that p is odd and $p \mid n$ and $\Phi_{n}(a)=p^{t}$.
- If $t>2$ then p^{2} divides $\frac{a^{n}-1}{a^{n / p}-1}$, since $\left(a^{n / p}-1\right) \mid \omega_{n}(a)$.

Finishing Up

- We've already shown that p is odd and $p \mid n$ and $\Phi_{n}(a)=p^{t}$.
- If $t>2$ then p^{2} divides $\frac{a^{n}-1}{a^{n / p}-1}$, since $\left(a^{n / p}-1\right) \mid \omega_{n}(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^{2} \left\lvert\, \frac{a^{n}-1}{a^{n / p}-1}\right.$. Thus, $\Phi_{n}(a)=p$.

Finishing Up

- We've already shown that p is odd and $p \mid n$ and $\Phi_{n}(a)=p^{t}$.
- If $t>2$ then p^{2} divides $\frac{a^{n}-1}{a^{n / p}-1}$, since $\left(a^{n / p}-1\right) \mid \omega_{n}(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^{2} \left\lvert\, \frac{a^{n}-1}{a^{n / p}-1}\right.$. Thus, $\Phi_{n}(a)=p$.
- Now, if $a \geq 3$ then $\Phi_{n}(a)>p$, which we know is false.

Finishing Up

- We've already shown that p is odd and $p \mid n$ and $\Phi_{n}(a)=p^{t}$.
- If $t>2$ then p^{2} divides $\frac{a^{n}-1}{a^{n / p}-1}$, since $\left(a^{n / p}-1\right) \mid \omega_{n}(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^{2} \left\lvert\, \frac{a^{n}-1}{a^{n / p}-1}\right.$. Thus, $\Phi_{n}(a)=p$.
- Now, if $a \geq 3$ then $\Phi_{n}(a)>p$, which we know is false.
- Hence, we must have $a=2$. By the Key Lemma, $n=6$.

Finishing Up

- We've already shown that p is odd and $p \mid n$ and $\Phi_{n}(a)=p^{t}$.
- If $t>2$ then p^{2} divides $\frac{a^{n}-1}{a^{n / p}-1}$, since $\left(a^{n / p}-1\right) \mid \omega_{n}(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^{2} \left\lvert\, \frac{a^{n}-1}{a^{n / p}-1}\right.$. Thus, $\Phi_{n}(a)=p$.
- Now, if $a \geq 3$ then $\Phi_{n}(a)>p$, which we know is false.
- Hence, we must have $a=2$. By the Key Lemma, $n=6$.
- Therefore, $(2,6)$ is the only bad pair.

Finishing Up

- We've already shown that p is odd and $p \mid n$ and $\Phi_{n}(a)=p^{t}$.
- If $t>2$ then p^{2} divides $\frac{a^{n}-1}{a^{n / p}-1}$, since $\left(a^{n / p}-1\right) \mid \omega_{n}(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^{2} \left\lvert\, \frac{a^{n}-1}{a^{n / p}-1}\right.$. Thus, $\Phi_{n}(a)=p$.
- Now, if $a \geq 3$ then $\Phi_{n}(a)>p$, which we know is false.
- Hence, we must have $a=2$. By the Key Lemma, $n=6$.
- Therefore, $(2,6)$ is the only bad pair.
- We've proven Zsigmondy's Theorem!

A Special Case of Zsigmondy's Theorem

A special case of Zsigmondy's Theorem states the problem in terms of Mersenne numbers:

Consider the $k^{t h}$ Mersenne number $M_{k}=2^{k}-1$. Then, each of $M_{2}, M_{3}, M_{4}, \ldots$ has a prime factor that does not occur as a factor of an earlier member of the sequence EXCEPT for M_{6}.

Acknowledgements

Thanks to Dr. Dan Shapiro, whose expository notes on the subject were invaluable in writing this talk.

Bibliography:

1. Introduction to the Theory of Numbers by Harold N. Shapiro
2. Abstract Algebra by David S. Dummit and Richard M. Foote
